

Computer Science Unit Overview Year 13
Rationale for overall teaching order

Work for paper 1 (Section 1-4 from specification) is covered earlier as it is most likely to be useful for students’ NEAs or for dealing with the skeleton program.

Work on NEA is completed in dedicated weekly sessions to ensure teacher overview of projects.

Work on skeleton program is completed in dedicated fortnightly sessions to ensure deep familiarity with this.

(2.3) – numbers/sections refer to specification

(https://filestore.aqa.org.uk/resources/computing/specifications/AQA-7516-7517-SP-2015.PDF)

Extension links

Computerphile - https://www.youtube.com/channel/UC9-y-6csu5WGm29I7JiwpnA

Programming tutorials - https://www.w3schools.com/

Section 10 not covered as usual, and online work showed Section 1 will need recapping. However, a significant amount of prep work for the NEA was

completed.

Teacher 1 (8 lessons/fortnight) will re-cover Section 1 and then continue with the course as normal.

Teacher 2 (2 lessons/fortnight) will cover Section 10 and deal with working on the skeleton program.

Computer Science – Year 13 Autumn 1

What are we
learning?

What knowledge, understanding
and skills will we gain?1

What does mastery look
like?2

How does this build on
prior learning?3

What additional resources
are available?

4.2 Data structures

NEA - Analysis &
Design

Skeleton program -
section C practice

Also:
Recap of Section 1
covered during
lockdown

Knowledge: Know the key terms:
queue, stack, list, graph (including
weighted, directed, and undirected
versions), vertex/node, edge/arc,
tree, dictionary, hash table,
vectors, adjacency matrix and
adjacency lists. Relational
databases and entity-relationship
(ER) diagrams.

Understanding: Be able to
distinguish between static and
dynamic data structure and
compare their uses. Compare use

Be able to recognise and
manipulate the various
structures in a wide variety of
representations (eg
horizontal or vertical tables,
using arrays, standard graph
notation)

Be able to select the
appropriate structure for a
given situation and explain
their choice.

Much of this can be
considered to build on
arrays used extensively
in Year 12 (eg
implementing a binary
tree as a 2D array or
three 1D arrays).

Students taking Further
Maths will be familiar with
the concepts of graphs
from D1 covered in Year
12 Spring 2.

Textbook p50-91

Resources – outline
PowerPoints with suggested
examples and scaffolding
activities

Practice questions (from
past exams) and section
assessments

Python files include:
Stackclass with pointer
Network

https://www.w3schools.com/

Teacher 2 will
cover Section 10 –
Databases and
SQL and cover the
work on the
skeleton program

of adjacent list and matrices and
identify when each is more
appropriate. Apply simple hashing
algorithms and explain how
collisions are dealt with. Use of dot
product in vectors. Why databases
are normalised. Why concurrent
access can cause issues and how
to they can be prevented/resolved.

Skills: Programming simple
implementations of stacks, queues,
binary trees and graphs.
Programming with dictionaries.
Produce a data model from given
data requirements for a simple
scenario involving multiple entities.

Be able to read and
manipulate programs
implementing simple
versions of the structures,
tracing results into a table.

Be able to compare ideas

(eg methods to control

concurrent access) in depth,

giving advantages and

disadvantages of each

Confidently draw ER

diagrams showing the

relationships between

entities

Be able to interpret and write

commands in SQL

This can also be used to
consolidate Year12
Summer 2 work on
classes as example
implementations can
utilise class structures.

Students may have an
awareness of databases
from GCSE Computing
(or similar) and may even
have used Access.
However most of the
terminology required here
will be new to students,
and most will not have
used SQL.

BinTree with arrays
Dictionaries and hashing

Current year’s skeleton
program and adjusted
previous practice questions
(created as used)

Teacher 2 will use:
Textbook p364-393

For practising SQL:
https://www.w3schools.com/

Python files:
- Using sqlite
- Using sqlite advanced

https://www.w3schools.com/

Computer Science - Year 13 Autumn 2

What are we
learning?

What knowledge, understanding
and skills will we gain?1

What does mastery
look like?2

How does this build on prior
learning?3

What additional
resources

are available?
4.3 Fundamentals
of Algorithms

4.4 Theory of
Computation

NEA -
Implementation;

Skeleton program -
section D practice

Teacher 2 will finish
Section 10 and
continue working
with the skeleton
program.

Knowledge: Breadth-first and Depth-first
graph traversal algorithms. Pre-, post-,
and in-order tree traversal algorithms.
Reverse Polish notation (RPN). Linear,
binary, and binary tree searching
algorithms. Bubble sort and merge sort.
Dijkstra’s algorithm. Idea of abstraction.
Set notation. Regular expressions.
Backus-Naur (BN). Time complexity and
big O notation. Tractable/intractable
problems. Turing machines. Mealy
machines.
Understanding: Describe typical uses of
graph-traversal and tree-traversal
algorithms. Understand where and why
RPN is used. Analyse the time
complexity of searching algorithms. Be
able to link FSM with regular
expressions. Understand which BN
expressions cannot be represented by
regular languages. Understand the
importance of the idea of a Universal
Turing machine and the Halting problem.
Skills: Be able to draw a binary search
tree from given information. Be able to
trace algorithms written in psuedocode
for any of the above situations.
Programming adjustments to the
skeleton program.

Students should be able
to apply their knowledge
of the base algorithms to
a variety of contexts and
formats (past exam
questions are a good
source of practice for
this).

Although not strictly
required by the
specification, a high-
performing student could
be able to write programs
to perform the various
algorithms in a variety of
contents (eg using arrays
or class structures)

Students should be able
to adjust the skeleton
program to account for
error handling or minor
functionality changes.

This builds directly on Year 13
Autumn 1 by using the graphs
introduced there and applying
algorithms to them.
Mealy machines build on FSM
covered in Year 12 Spring 2.
The idea of tracing algorithms
(in trace-tables) is used
throughout the course but
often found difficult by
students. These topics
provide ample opportunity for
strengthen that skill.

Maths students will be familiar
with the basics of set notation
but probably not subsets. Also
the notation for binary using
non-standard maths notation.
Further Maths students may
be familiar with Bubble sort
and Dijkstra’s algorithm if they
have studied D1, although the
style of exam question (often
using pseudocode) is very
different in Computer Science.

Textbook p92-181

Resources – outline
Powerpoints with
suggested
examples and
scaffolding activities

Practice questions
(from past exams)
and section
assessments

Python files include:
Graph traversal
Tree traversal
Bubble and merge

sort

Network with
Dijkstra

Current year’s
skeleton program
and check the AQA
wikibooks page for
suggested changes
to the program.

Computer Science - Year 13 Spring 1

What are we
learning?

What knowledge, understanding
and skills will we gain?1

What does mastery look
like?2

How does this build on
prior learning?3

What additional
resources

are available?
4.5-4.9 A level
additions to AS
content (especially
4.9 The Internet)

NEA -
Implementation

Skeleton program -
further practice

Teacher 2 will
focus on working
on the skeleton
program and
oversee finishing
the NEA

Knowledge: Floating point binary
and absolute/relative error. Key
features of vector graphics. Adder
and half-adder logic circuits. D-type
flip-flops. Interrupts in the fetch-
execute cycle. The internet and how
it works. Internet security. The
TCP/IP protocol. Client-server
model and thin- vs thick-client
computing. CRUD applications and
REST. Recognise JSON and XML.
IP address structure and subnet
masking. DHCP and NAT.

Understanding: Compare
advantages and typical uses of fixed
point binary to floating point binary.
Understand why floating point binary
is normalised. Explain the use and
placement of a D-type flip-flop in a
logic circuit. Understand the use of
stacks in interrupts. Explain the
purposes of the four layers in the
TCP/IP protocol. Compare JSON
with XML

Skills: Be able to read, write and
convert between various number
forms (decimal, floating point binary
etc). Be construct a half-adder logic
circuit, and recognise a full-adder
circuit.

Students are confident in
using the various forms of
binary.

Students will know and be
able to justify the time
complexities of the standard
known algorithms.
Additionally, they will be able
to work out the time
complexities of non-standard
algorithms described (eg in
pseudocode).

Section 4.5-4.7 build
directly upon those
sections from Year 12,
and some time can be
taken to revise the Y12
work (eg looking at all
logic circuits when
introducing the new adder
circuits)

Section 4.8 has nothing
new from Year 12 this is a
good time to review and
look at a new case study.

Section 4.9 is mostly new
content also some terms
(eg IP, virus) maybe be
familiar from GCSE or
general use.

Textbook p134-363 (A
level sections only)

Resources – outline
Powerpoints with
suggested examples
and scaffolding activities

Practice questions (from
past exams) and section
assessments

Current year’s skeleton
program – opportunity to
use student ideas in
questions/potential
changes

Computer Science - Year 13 Spring 2

What are we
learning?

What knowledge, understanding
and skills will we gain?1

What does mastery look
like?2

How does this build on
prior learning?3

What additional
resources

are available?
4.11 Big Data

4.12 Functional
Programming

NEA - Testing &
Evaluation (finish)

Teacher 2 will
focus on working
on the skeleton
program and
oversee finishing
the NEA

Knowledge: Know that big data is a
catch-all term for data that won’t fit
the usual containers. Big data can
be described in terms of volume,
velocity and variety. Functional
programming terminology: function
type, first-class object, function
application, partial function
applications, composition of
functions, higher order functions. Be
familiar with map, filter, reduce/fold
and typical list processing with head:
[tail].

Understanding: Processing of big
data can be distributed across
several servers. Functional
programming is a solution because
of immutable data structures.
Understand the functional
programming paradigm.

Skills: Use a fact based model for
representing data and graph
schema for capturing the structure
of a dataset

Time should also be given to
finishing the NEA.

Students should be able to
identify the features that make
data ‘big’ in any content.

Students should be able to
follow and add to graph
schema from descriptions.

Although not strictly required
by the specification a high-
performing student might
practice writing programs
using a functional
programming paradigm
(Python file FP6 provides an
opportunity to do this)

The idea of big data is
common in Section 8 style
questions and this could
be used as another
opportunity to look as a
case study for that
section.

Students are likely to
have used functions (with
return) in other programs,
and this can help them
understand the Functional
programming paradigm.

Textbook p382-408

Resources – outline
Powerpoints with
suggested examples
and scaffolding activities

Practice questions (from
past exams) and section
assessments

Six Python files (FP1 to
FP6) introducing
students to concepts of
Functional Programming
and using it in Python.

Current year’s skeleton
program

Computer Science - Year 13 Summer 1

What are we
learning?

What knowledge, understanding
and skills will we gain?1

What does mastery look
like?2

How does this build on
prior learning?3

What additional
resources

are available?
Guided revision on
targeted topics (eg
Section 10
databases,
reviewing skeleton
program)

Knowledge: revisiting and
reconsolidating all knowledge from
the 2 year course

Understanding: building a deeper
understanding of the course through
regular review and practice

Skills: particular focus on ensuring
exam technique is secure

Students can confidently
tackle questions on a range of
topics.

Work is presented clearly in
logical steps.

When faced with an unusual
or difficult context students
are not afraid to try several
approaches to find a correct
solution .

This is all about
consolidating and
applying prior learning.

Past papers

Revision PowerPoints
and questions banks to
help revise specific
topics. Current
resources include topics:
Data structures
TCP/IP
Assembly code
Buses, stored program
Digital and analogue
Longer answer
questions
Sound revision
Digital camera and RFID
Section 4 review
Section 10 review
Final checklist
Final paper 2 revision

Excel spreadheet of past
papers for students to
record performance and
identify areas for
improvement

Computer Science - Year 12 Summer 2

What are we
learning?

What knowledge, understanding
and skills will we gain?

What does mastery look
like?

How does this build on
prior learning?

What additional
resources

are available?

(revision of
requested topics
although exam
usually quite early)

Knowledge: revisiting and
reconsolidating all knowledge from
the 2 year course

Understanding: building a deeper
understanding of the course through
regular review and practice

Skills: particular focus on ensuring
exam technique is secure

Students can confidently
tackle questions on a range of
topics.

Work is presented clearly in
logical steps.

When faced with an unusual
or difficult context students
are not afraid to try several
approaches to find a correct
solution .

This is all about
consolidating and
applying prior learning.

Past papers

Revision PowerPoints
and questions banks to
help revise specific
topics. Current
resources include topics:
Data structures
TCP/IP
Assembly code
Buses, stored program
Digital and analogue
Longer answer
questions
Sound revision
Digital camera and RFID
Section 4 review
Section 10 review
Final checklist
Final paper 2 revision

Excel spreadheet of past
papers for students to
record performance and
identify areas for
improvement.

