

Year 10 Computer Science

2020 – 2021

There are two parts to the Computer Science course, Programming and Computational thinking, and these two parts are taught concurrently to enable

students to make progress with the theory whilst practising and developing their programming skills. Students are thus able to build on all aspects of the work

introduced in year 9 and make the important links between these two areas.

In half term 1 students will cover Programming 1- 6 and Computational thinking 1 - 6.

In half term 2 students will cover Programming 7 - 12 and Computational thinking 7 – 12

Each half terms work is concluded by some review and assessment

The scheme of work for computer science is designed to ensure any gaps and misconceptions from year 9 are addressed. The curriculum re-visits key

concepts regularly, and recaps and builds on the preliminary and introductory work from year 9 in the context of the GCSE specification. It is not necessary

therefore to change the planned curriculum for year 10.

Low-stakes quizzing is used via Microsoft forms and BBC bitesize topic test to track students’ knowledge and address gaps as they occur. Results are

recorded in the Class Notebook, so that gaps in knowledge can be identified and individual support in the form of one to one/small group catch up sessions

can be given to students who continue to have misconceptions.

Key Knowledge which we will re-visit during year 10 include

9.6 Computational Thinking, covering decomposition, pattern recognition, abstraction and problem solving.

Computer Science - Year 10 Term 1.1 CT 1 - 6

What are we
learning?

What knowledge, understanding
and skills will we gain?

What does
mastery look

like?

How
does this
build on

prior
learning?

What additional resources
are available?

Binary numbers

Unsigned

integers

Binary

arithmetic

Two’s

complement

Knowledge:
Define what is meant by the term ‘digital computer’
Give examples of different types of computer
Define what is meant by the terms ‘binary’ and ‘bit’
Define what is meant by the terms ‘nibble’ and
‘byte’
Define what is meant by the term ‘overflow error’

Understanding:
Explain why binary is used to represent data and
program instructions in a computer
Describe the relationship between the number of
available bits and the range of unique values that
can be represented
Describe the effects of an overflow error
Differentiate between signed and unsigned
integers
Describe how positive and negative numbers are
represented in two’s complement

Skills:
Determine the number of unique values that can
be represented by a binary pattern of a given
length (2^n)
Convert between denary and 8-bit binary numbers
Add together two positive 8-bit binary integers
Find the two’s complement of a positive binary
number

Define what is
meant by the
terms ‘bit’, ‘nibble’
and ‘byte’
List three types of
data represented
in binary in a
computer system
Give the 8-bit
binary equivalent
of an unsigned
denary number
Give the denary
equivalent of an
unsigned 8-bit
binary number
Add together two
positive 8-bit
binary numbers
Explain what is
meant by an
overflow error

8.2 Binary
Bits and
Bobs

Seneca

BBC Bitesize

cs4fn, Queen Mary, University of London
(www.cs4fn.org).
Computer Science Unplugged

(http://csunplugged.org/

BCS Glossary of Computing and ICT, 13th edition

(ISBN 9781780171500)

A range of articles on teaching coding:

www.edsurge.com/guide/teaching-kids-to-code

Python resources

Official Python documentation (also available through

help in IDLE): www.docs.python.org/3/

Python summer school from Anglia Ruskin University

is an excellent resource with videos and programming

challenges: http://www.pythonschool.net/

Python code for kids is a clearly written summary of

the Python language written in accessible language:

www.pythondictionary.code-it.co.uk/

‘Python in 10 minutes’ is a quick run through of the

basic concepts:

www.korokithakis.net/tutorials/python/

‘Quintin Cutts – Too much doing, not enough

understanding’ is a 20-minute video containing useful

ideas and concepts on how to teach programming:

www.youtube.com/watch?v=Pim4aYfiZiY

Computer Science - Year 10 Term 1.1 P 1 - 6

http://www.cs4fn.org/
http://csunplugged.org/
https://www.edsurge.com/guide/teaching-kids-to-code
http://docs.python.org/3/
http://www.pythonschool.net/
http://www.pythonschool.net/
http://pythondictionary.code-it.co.uk/
http://pythondictionary.code-it.co.uk/
http://www.korokithakis.net/tutorials/python/
http://www.korokithakis.net/tutorials/python/
http://www.youtube.com/watch?v=Pim4aYfiZiY

What are we
learning?

What knowledge, understanding
and skills will we gain?

What does
mastery

look like?

How does
this build on

prior
learning?

What additional resources
are available?

Intro to
programming
Decomposition
Algorithms
Data types
Variables
Input and integer
functions
Debugging tools
Flowcharts

Knowledge:
Define the term ‘program’
Identify types of programs used every day
Identify Python as a programming language
Define the term ‘decomposition’
Define the term ‘algorithm’
Define the term ‘sequence’
Define the term ‘variable’
Define the term ‘runtime error’

Understanding:
Layout code to be readable and maintainable
Decompose a problem
Order the pieces of an algorithm (unplugged)
Recognise primitive data types (int, real, char, string)
Create variables of all types
Create meaningful identifier names
Translate code into flowchart symbols
Represent an algorithm in a flowchart

Skills:
Access an integrated development environment
Load and run a Python program
Change a Python program
Save a Python program
Use arithmetic operators and BIDMAS
Correct errors in programs
Use variables in algorithms and programs
Order the pieces of an algorithm (IDE)
Use sequence in algorithms and program code
Interpret error messages
Correct errors in ordering
Assign values to variables, with the correct data types
View contents of memory (variable) in IDE

Represent
algorithms
in
flowcharts
Create
code from
algorithms
represented
in
flowcharts

7.1
Introduction to
Scratch
7.6 Micro:Bit
Madness
8.3 From
Scratch to
Python
9.1 More
Python
9.6
Computational
Thinking

Seneca

BBC Bitesize

cs4fn, Queen Mary, University of London

(www.cs4fn.org).
Computer Science Unplugged
(http://csunplugged.org/
BCS Glossary of Computing and ICT, 13th
edition (ISBN 9781780171500)
A range of articles on teaching coding:
www.edsurge.com/guide/teaching-kids-to-code

Python resources
Official Python documentation (also available
through help in IDLE): www.docs.python.org/3/

Python summer school from Anglia Ruskin
University is an excellent resource with videos
and programming challenges:
http://www.pythonschool.net/
Python code for kids is a clearly written
summary of the Python language written in
accessible language:
www.pythondictionary.code-it.co.uk/
‘Python in 10 minutes’ is a quick run through of
the basic concepts:
www.korokithakis.net/tutorials/python/
‘Quintin Cutts – Too much doing, not enough
understanding’ is a 20-minute video containing
useful ideas and concepts on how to teach
programming:
www.youtube.com/watch?v=Pim4aYfiZiY

http://www.cs4fn.org/
http://csunplugged.org/
https://www.edsurge.com/guide/teaching-kids-to-code
http://docs.python.org/3/
http://www.pythonschool.net/
http://www.pythonschool.net/
http://pythondictionary.code-it.co.uk/
http://pythondictionary.code-it.co.uk/
http://www.korokithakis.net/tutorials/python/
http://www.korokithakis.net/tutorials/python/
http://www.youtube.com/watch?v=Pim4aYfiZiY

Take input and create output
Find and fix runtime errors
Use primitive data types (integer, real, char, string)
Translate a flowchart into code

Computer Science - Year 10 Term 1.2 CT 7 - 12

What are we
learning?

What knowledge, understanding
and skills will we gain?

What does mastery
look like?

How does this
build on prior

learning?

What additional resources
are available?

Two’s

complement

2

Logical

binary shifts

Arithmetic

binary shifts

Hexadecimal

ASCII

Knowledge: Signed denary numbers
Two’s complement binary numbers
Define what is meant by the term
‘hexadecimal’. Define what is meant by the
term ‘character set’
Understanding: Determine the range of
values that can be represented in two’s
complement by a binary number of a given
length. Explain why a number may be less
precise after a binary shift right has been
applied. Describe how an arithmetic right
shift differs from a logical right shift
Explain why hexadecimal notation is used
Describe how characters are represented
in 7-bit ASCII
Skills: Convert between signed denary
numbers and two’s complement binary
numbers. Apply logical left and right shifts
to binary integers. Use logical binary shifts
to multiply and divide unsigned binary
integers by powers of 2. Apply arithmetic
left and right shifts to signed binary
numbers. Convert between hexadecimal

Apply a logical binary
shift left to a positive 8-
bit binary number
Apply a logical shift
right to a positive 8-bit
binary number
Explain why a binary
number may become
less accurate after a
binary shift right
Apply an arithmetic
binary shift right to a
two’s complement
number
Give the hexadecimal
equivalent of an 8-bit
binary number
Give the binary
equivalent of a
hexadecimal number
Explain why
hexadecimal is used

8.2 Binary Bits
and Bobs
Unit CT1-6

Seneca

BBC Bitesize

cs4fn, Queen Mary, University of London

(www.cs4fn.org).
Computer Science Unplugged

(http://csunplugged.org/

BCS Glossary of Computing and ICT, 13th edition

(ISBN 9781780171500)

A range of articles on teaching coding:

www.edsurge.com/guide/teaching-kids-to-code

Python resources

Official Python documentation (also available

through help in IDLE): www.docs.python.org/3/

Python summer school from Anglia Ruskin

University is an excellent resource with videos and

programming challenges:

http://www.pythonschool.net/

Python code for kids is a clearly written summary of

the Python language written in accessible

language: www.pythondictionary.code-it.co.uk/

http://www.cs4fn.org/
http://csunplugged.org/
https://www.edsurge.com/guide/teaching-kids-to-code
http://docs.python.org/3/
http://www.pythonschool.net/
http://www.pythonschool.net/
http://pythondictionary.code-it.co.uk/
http://pythondictionary.code-it.co.uk/

and binary. Given the ASCII code for one
character derive the code for another
Outline the shortcomings of ASCII and
how encoding systems that use more bits
overcome them.

Describe how
characters are encoded
in ASCII
Derive the code for an
ASCII character from
that of another
Describe the limitations
of ASCII

‘Python in 10 minutes’ is a quick run through of the

basic concepts:

www.korokithakis.net/tutorials/python/

‘Quintin Cutts – Too much doing, not enough

understanding’ is a 20-minute video containing

useful ideas and concepts on how to teach

programming:

www.youtube.com/watch?v=Pim4aYfiZiY

Computer Science - Year 10 Term 1.2 P 7 - 12

What are we
learning?

What knowledge, understanding
and skills will we gain?

What does mastery
look like?

How does this
build on prior

learning?

What additional resources
are available?

String
manipulation,
string methods
if, if else,
relational
operators
if elif else,
readability

Boolean
operators

Repetition (while)

Knowledge:
What is string manipulation
Describe string methods
Define ‘AND’, ‘NOT’ and ‘OR’

Understanding:
The purpose of string manipulation
Use flowchart decision symbol
Identify parts of code (variables, constants,
selection, repetition)
Construct truth tables for Boolean operators
and combinations
Use repetition (condition-controlled loops) in
algorithms

Skills:
Use string manipulation functions (index,
left, right, upper, lower, isalpha, …, etc.)
Use relational operators in flowchart and
code
Use ‘if’ and ‘if else’ in code
Use comments, white space, meaningful
identifiers, and indentation in code

Use flowcharts to
represent selection
and repetition
Identify parts of a
program
Solve problems
using code
Use repetition in
code
Use selection in
code

7.1 Introduction to

Scratch

7.6 Micro:Bit

Madness

8.3 From Scratch to

Python

9.1 More Python

9.6 Computational

Thinking

Unit P1-6

Seneca. BBC Bitesize.

cs4fn, Queen Mary, University of London

(www.cs4fn.org). Computer Science

Unplugged (http://csunplugged.org/

BCS Glossary of Computing and ICT, 13th

edition (ISBN 9781780171500)

A range of articles on teaching coding:

www.edsurge.com/guide/teaching-kids-to-code

Python resources

Official Python documentation (also available

through help in IDLE): www.docs.python.org/3/

Python summer school from Anglia Ruskin

University is an excellent resource with videos

and programming challenges:

http://www.pythonschool.net/

Python code for kids is a clearly written

summary of the Python language written in

accessible language:

www.pythondictionary.code-it.co.uk/

http://www.korokithakis.net/tutorials/python/
http://www.korokithakis.net/tutorials/python/
http://www.youtube.com/watch?v=Pim4aYfiZiY
http://www.cs4fn.org/
http://csunplugged.org/
https://www.edsurge.com/guide/teaching-kids-to-code
http://docs.python.org/3/
http://www.pythonschool.net/
http://www.pythonschool.net/
http://pythondictionary.code-it.co.uk/
http://pythondictionary.code-it.co.uk/

Use relational operators in flowchart and
code
Use repetition (condition-controlled loops) in
code

‘Python in 10 minutes’ is a quick run through of

the basic concepts:

www.korokithakis.net/tutorials/python/

‘Quintin Cutts – Too much doing, not enough

understanding’ is a 20-minute video containing

useful ideas and concepts on how to teach

programming:

www.youtube.com/watch?v=Pim4aYfiZiY

Computer Science - Year 10 Term 2.1 CT 13 - 18

What are
we

learning?

What knowledge, understanding
and skills will we gain?

What does mastery
look like?

How does this
build on prior

learning?

What additional resources
are available?

Stored

program

concept

Fetch-

decode-

execute

Secondary

storage

Knowledge: What is the ‘stored program
concept’. Hardware components. Von Neumann
architecture.
What is secondary storage
Understanding: Define what is meant by the
‘stored program concept’. Describe the
hardware components used in the von
Neumann architecture and explain their role in
the fetch-decode-execute cycle. Explain how
the speed of the clock impacts on performance.
Explain how pipelining improves the
performance of the CPU.
Explain the relationship between the width of
the address bus and the number of memory
locations that can be addressed. Explain why
secondary storage is needed
Describe how data are stored on magnetic,
optical and solid-state media.
Skills: Calculate the number of addressable
memory locations provided by an address bus of
a specified width. Compare the capacity, speed
and portability of magnetic, optical and solid-
state storage devices. Select an appropriate

Define what is
meant by the term
‘stored program
concept’
Describe what is
stored in main
memory when a
program is running
Explain what
happens during the
fetch-decode-
execute cycle and
the role of specified
components
Label and complete
a diagram of the
inside of a computer
Explain the need for
secondary storage
Describe how data
are stored on a
solid-state drive

8.2 Binary Bits and
Bobs
Unit CT1-6
Unit CT7-12

Seneca

BBC Bitesize

cs4fn, Queen Mary, University of London

(www.cs4fn.org).
Computer Science Unplugged

(http://csunplugged.org/

BCS Glossary of Computing and ICT, 13th edition

(ISBN 9781780171500)

A range of articles on teaching coding:

www.edsurge.com/guide/teaching-kids-to-code

Python resources

Official Python documentation (also available

through help in IDLE): www.docs.python.org/3/

Python summer school from Anglia Ruskin

University is an excellent resource with videos and

programming challenges:

http://www.pythonschool.net/

Python code for kids is a clearly written summary

of the Python language written in accessible

language: www.pythondictionary.code-it.co.uk/

http://www.korokithakis.net/tutorials/python/
http://www.korokithakis.net/tutorials/python/
http://www.youtube.com/watch?v=Pim4aYfiZiY
http://www.cs4fn.org/
http://csunplugged.org/
https://www.edsurge.com/guide/teaching-kids-to-code
http://docs.python.org/3/
http://www.pythonschool.net/
http://www.pythonschool.net/
http://pythondictionary.code-it.co.uk/
http://pythondictionary.code-it.co.uk/

type of storage for a particular purpose.
Construct an expression to calculate data
storage requirements.

‘Python in 10 minutes’ is a quick run through of the

basic concepts:

www.korokithakis.net/tutorials/python/

‘Quintin Cutts – Too much doing, not enough

understanding’ is a 20-minute video containing

useful ideas and concepts on how to teach

programming:

www.youtube.com/watch?v=Pim4aYfiZiY

Computer Science - Year 10 Term 2.1 P13 - 18

What are we
learning?

What knowledge,
understanding

and skills will we gain?

What does mastery
look like?

How does this build
on prior learning?

What additional resources
are available?

One-

dimensional

lists

for loops, range

function

Procedures

Functions

Subprograms

Knowledge:
Define the terms ‘array’ and
‘list’
Define the term ‘procedure’
Define the term ‘parameter’
Define the term ‘function’
Define the term ‘return value’

Understanding:
Explain that the range()
function generates a
sequence of numbers
Use ‘separation of concerns’

Skills:
Access each item in a list
using indexing
Create, append, delete items
from a list
Use iteration ‘for’ to process
every item in a one-
dimensional data structure
Create procedures

Use ‘lists’
Use ‘range()’
Use ‘for’
Create procedures
Create functions

7.1 Introduction to

Scratch

7.6 Micro:Bit Madness

8.3 From Scratch to

Python

9.1 More Python

9.6 Computational

Thinking

Unit P1-6
Unit P7-12

Seneca

BBC Bitesize

cs4fn, Queen Mary, University of London

(www.cs4fn.org).
Computer Science Unplugged (http://csunplugged.org/

BCS Glossary of Computing and ICT, 13th edition

(ISBN 9781780171500)

A range of articles on teaching coding:

www.edsurge.com/guide/teaching-kids-to-code

Python resources

Official Python documentation (also available through

help in IDLE): www.docs.python.org/3/

Python summer school from Anglia Ruskin University is

an excellent resource with videos and programming

challenges: http://www.pythonschool.net/

Python code for kids is a clearly written summary of the

Python language written in accessible language:

www.pythondictionary.code-it.co.uk/

‘Python in 10 minutes’ is a quick run through of the

basic concepts: www.korokithakis.net/tutorials/python/

‘Quintin Cutts – Too much doing, not enough

understanding’ is a 20-minute video containing useful

http://www.korokithakis.net/tutorials/python/
http://www.korokithakis.net/tutorials/python/
http://www.youtube.com/watch?v=Pim4aYfiZiY
http://www.cs4fn.org/
http://csunplugged.org/
https://www.edsurge.com/guide/teaching-kids-to-code
http://docs.python.org/3/
http://www.pythonschool.net/
http://www.pythonschool.net/
http://pythondictionary.code-it.co.uk/
http://pythondictionary.code-it.co.uk/
http://www.korokithakis.net/tutorials/python/
http://www.korokithakis.net/tutorials/python/

Create functions

 ideas and concepts on how to teach programming:

www.youtube.com/watch?v=Pim4aYfiZiY

Computer Science - Year 10 Term 2.2 CT 19 - 24

What are we
learning?

What knowledge, understanding
and skills will we gain?

What does
mastery look

like?

How does
this build
on prior

learning?

What additional resources
are available?

Operating

systems

OS: file

management

OS: process

management

OS: peripherals

& user

management

Utility software

Knowledge: What is an operating system
Identify tasks carried out by an OS
Define what is meant by the term ‘peripheral’
Define what is meant by the term ‘access control’
Define what is meant by the term ‘utility software’
Identify different types of utility software
Understanding: Describe the role of the operating
system in a computer system. Describe how the OS
organises files and allocates space on a hard drive.
Describe how file permissions are used to control access
to files. Describe how an OS uses scheduling to give each
active process a share of CPU time. Describe the features
of the round-robin scheduling algorithm. Describe how the
OS uses a paging algorithm to swap programs in and out
of main memory. Describe how the OS uses drivers to
communicate with and manage peripherals. Explain the
purpose of a user interface and describe features of a
user interface.Describe commonly used methods of
authentication. Describe the purpose of:
– file repair/recovery software
– backup/recovery software
– file compression software

Define what is
meant by the
term ‘operating
system’
Describe how
files are
organised
Select
appropriate
permissions for
specified users
Define what is
meant by the
term ‘process’
Describe how
an OS allocates
each active
process a share
of CPU time
Explain the role
of a device
driver

8.2 Binary

Bits and

Bobs

Unit CT1-

6

Unit CT7-
12
Unit
CT13-18

Seneca

BBC Bitesize

cs4fn, Queen Mary, University of London

(www.cs4fn.org).
Computer Science Unplugged

(http://csunplugged.org/

BCS Glossary of Computing and ICT, 13th

edition (ISBN 9781780171500)

A range of articles on teaching coding:

www.edsurge.com/guide/teaching-kids-to-code

Python resources

Official Python documentation (also available

through help in IDLE): www.docs.python.org/3/

Python summer school from Anglia Ruskin

University is an excellent resource with videos

and programming challenges:

http://www.pythonschool.net/

Python code for kids is a clearly written
summary of the Python language written in
accessible language:
www.pythondictionary.code-it.co.uk/

http://www.youtube.com/watch?v=Pim4aYfiZiY
http://www.cs4fn.org/
http://csunplugged.org/
https://www.edsurge.com/guide/teaching-kids-to-code
http://docs.python.org/3/
http://www.pythonschool.net/
http://www.pythonschool.net/
http://pythondictionary.code-it.co.uk/
http://pythondictionary.code-it.co.uk/

– disk defragmentation software
Skills: Construct an expression to calculate the number of
blocks of space on a hard drive needed to store a file of a
given size. Select an appropriate level of file access (read,
write, delete, none) for a user. Select suitable access right
for specified individuals. Select which utility software tool
to use for a particular task.

Describe
features of a
GUI user
interface
Select a utility
tool for a
specified job.

Python in 10 minutes’ is a quick run through of
the basic concepts:
www.korokithakis.net/tutorials/python/
‘Quintin Cutts – Too much doing, not enough
understanding’ is a 20-minute video containing
useful ideas and concepts on how to teach
programming:
www.youtube.com/watch?v=Pim4aYfiZiY

Computer Science - Year 10 Term 2.2 P 19 - 24

What are we
learning?

What knowledge, understanding
and skills will we gain?

What does
mastery

look like?

How does this
build on prior

learning?

What additional resources
are available?

String.format()

Two-

dimensional

lists

Validation

Linear search

(one-

dimensional)

Linear search

(two-

dimensional)

Knowledge: Define the term ‘array’.
Define the term ‘list’. Understanding:
Give characteristics of one-dimensional
and two-dimensional data structures.
Apply a linear search to a one-dimensional
list (paper). Complete a linear search
algorithm in a flowchart. Apply a linear
search to a two-dimensional list (paper)
Complete a linear search algorithm in a
flowchart.

Skills: Format output to meet requirements.
Format output suitable for the end user.
Use indexing to access any item in a two-
dimensional structure. Use ‘for’ to iterate
over every item in a two-dimensional
structure. Use ‘while’ to find a row in a two-
dimensional structure. Validate input using
presence check, length check, range check,
pattern check. Write a linear search for a
single item in a one-dimensional list (code).
Write a linear search for a single record in a
two-dimensional list (code)

Use one-
dimensional
and two-
dimensional
lists
Find a single
item in a
one-
dimensional
list
Find a single
record and
file in a two-
dimensional
list

7.1 Introduction to

Scratch

7.6 Micro:Bit

Madness

8.3 From Scratch to

Python

9.1 More Python

9.6 Computational

Thinking

Unit P1-6

Unit P7-12
Unit P13-18

Seneca. BBC Bitesize.
cs4fn, Queen Mary, University of London
(www.cs4fn.org).
Computer Science Unplugged
(http://csunplugged.org/
BCS Glossary of Computing and ICT, 13th edition
(ISBN 9781780171500)
A range of articles on teaching coding:
www.edsurge.com/guide/teaching-kids-to-code
Python resources
Official Python documentation (also available
through help in IDLE): www.docs.python.org/3/
Python summer school from Anglia Ruskin
University is an excellent resource with videos and
programming challenges:
http://www.pythonschool.net/
Python code for kids is a clearly written summary of
the Python language written in accessible
language: www.pythondictionary.code-it.co.uk/
‘Python in 10 minutes’ is a quick run through of the
basic concepts:
www.korokithakis.net/tutorials/python/

http://www.korokithakis.net/tutorials/python/
http://www.korokithakis.net/tutorials/python/
http://www.youtube.com/watch?v=Pim4aYfiZiY
http://www.cs4fn.org/
http://csunplugged.org/
https://www.edsurge.com/guide/teaching-kids-to-code
http://docs.python.org/3/
http://www.pythonschool.net/
http://www.pythonschool.net/
http://pythondictionary.code-it.co.uk/
http://pythondictionary.code-it.co.uk/
http://www.korokithakis.net/tutorials/python/
http://www.korokithakis.net/tutorials/python/

.

‘Quintin Cutts – Too much doing, not enough
understanding’ is a 20-minute video containing
useful ideas and concepts on how to teach
programming:
www.youtube.com/watch?v=Pim4aYfiZiY

Computer Science - Year 10 Term 3.1 CT 25 - 30

What are we
learning?

What knowledge, understanding
and skills will we gain?

What does
mastery look

like?

How does
this build on

prior
learning?

What additional resources
are available?

Malware &
anti-malware
Hackers
Social
engineering
Data-level
protection

Knowledge: Define what is meant by the term
‘cyberattack’. Define what is meant by the term
‘hacker’. Define what is meant by the term ‘social
engineering’. Understanding: Describe the
financial, reputational and legal damage that a
cyberattack can cause. Describe the characteristics
of and threat posed by different types of
malware. Describe how anti-malware works. Explain
why it is important to keep anti-malware up-to-
date. Explain why unpatched software is a target for
hackers. Explain the function of a firewall. Explain
how ethical hacking and penetration testing help
identify vulnerabilities. Describe commonly used
social engineering tactics (phishing, pretexting,
baiting, quid pro quo) used by hackers. Explain the
purpose of an acceptable use policy and what it
typically includes. Explain how data are protected by
encryption. Describe how backup and recovery
procedures protect against data loss. Explain how
access control helps to protect systems and
data. Explain how a hacker can exploit a code
vulnerability. Describe examples of bad coding

Identify a type of
malware. Describe
how anti-malware
protects digital
systems and data.
Explain how
backup and
recovery
procedures would
help an
organisation
withstand a
ransomware
attack.
Explain the security
threat posed by
unpatched
software.
Describe the
purpose of an
acceptable use
policy.
Describe two bad
programming

8.2 Binary Bits
and Bobs
Unit CT1-6
Unit CT7-12
Unit CT13-18
Unit CT 19-24

Seneca. BBC Bitesize.
cs4fn, Queen Mary, University of London (www.cs4fn.org).
Computer Science Unplugged (http://csunplugged.org/
BCS Glossary of Computing and ICT, 13th edition (ISBN
9781780171500)
A range of articles on teaching

coding: www.edsurge.com/guide/teaching-kids-to-code
Python resources
Official Python documentation (also available through help in
IDLE): www.docs.python.org/3/
Python summer school from Anglia Ruskin University is an
excellent resource with videos and programming
challenges: http://www.pythonschool.net/
Python code for kids is a clearly written summary of the
Python language written in accessible
language: www.pythondictionary.code-it.co.uk/
‘Python in 10 minutes’ is a quick run through of the basic
concepts: www.korokithakis.net/tutorials/python/
‘Quintin Cutts – Too much doing, not enough understanding’
is a 20-minute video containing useful ideas and concepts on
how to
teach programming: www.youtube.com/watch?v=Pim4aYfiZiY

http://www.youtube.com/watch?v=Pim4aYfiZiY
http://www.cs4fn.org/
http://csunplugged.org/
https://www.edsurge.com/guide/teaching-kids-to-code
http://docs.python.org/3/
http://www.pythonschool.net/
http://www.pythonschool.net/
http://pythondictionary.code-it.co.uk/
http://pythondictionary.code-it.co.uk/
http://www.korokithakis.net/tutorials/python/
http://www.korokithakis.net/tutorials/python/
http://www.youtube.com/watch?v=Pim4aYfiZiY

practices and secure coding practices Explain how
code reviews and audit trails help to identify
vulnerabilities. Skills: Identify a type of
malware. Describe how anti-malware protects digital
systems and data. Explain how backup and recovery
procedures would help an organisation withstand a
ransomware attack. Explain the security threat posed
by unpatched software. Describe the purpose of an
acceptable use policy. Describe bad programming
practices that could make software vulnerable to
attack.

practices that could
make software
vulnerable to
attack.

Computer Science - Year 10 Term 3.1 P 25 - 30

What are we
learning?

What knowledge, understanding
and skills will we gain?

What does
mastery look like?

How does this build
on prior learning?

What additional resources
are available?

Merge sort

Reading files

String

processing

Writing files

Authentication

Knowledge:
Describe the merge sort algorithm
Define the term ‘authentication’

Understanding:
Create a flowchart for algorithm

Skills:
Merge two sorted lists (paper,
code)
Open files for reading
Read lines from text files
Close a file
Split lines on commas
Store items in lines as records in
two-dimensional structure
Open files for writing
Construct comma-separated value
line from record in two-
dimensional structure

Validate input
Read and write files
Iterate over all
records in a two-
dimensional
structure

7.1 Introduction to

Scratch

7.6 Micro:Bit Madness

8.3 From Scratch to

Python

9.1 More Python

9.6 Computational

Thinking

Unit P1-6

Unit P7-12

Unit P13-18

Unit P19-24

Seneca
BBC Bitesize
cs4fn, Queen Mary, University of London
(www.cs4fn.org).
Computer Science Unplugged
(http://csunplugged.org/
BCS Glossary of Computing and ICT, 13th edition
(ISBN 9781780171500)
A range of articles on teaching coding:
www.edsurge.com/guide/teaching-kids-to-code

Python resources
Official Python documentation (also available
through help in IDLE): www.docs.python.org/3/
Python summer school from Anglia Ruskin
University is an excellent resource with videos and
programming challenges:
http://www.pythonschool.net/
Python code for kids is a clearly written summary

of the Python language written in accessible
language: www.pythondictionary.code-
it.co.uk/

http://www.cs4fn.org/
http://csunplugged.org/
https://www.edsurge.com/guide/teaching-kids-to-code
http://docs.python.org/3/
http://www.pythonschool.net/
http://www.pythonschool.net/
http://pythondictionary.code-it.co.uk/
http://pythondictionary.code-it.co.uk/
http://pythondictionary.code-it.co.uk/

Write comma separated text
(records) to a file
Implement authentication using a
two-dimensional structure with at
least two columns

‘Python in 10 minutes’ is a quick run through
of the basic concepts:
www.korokithakis.net/tutorials/python/
‘Quintin Cutts – Too much doing, not enough
understanding’ is a 20-minute video
containing useful ideas and concepts on how
to teach programming:
www.youtube.com/watch?v=Pim4aYfiZiY

Computer Science - Year 10 Term 3.2 CT 31 - 36

What are we
learning?

What knowledge, understanding
and skills will we gain?

What does mastery
look like?

How does
this build on

prior
learning?

What additional resources
are available?

LANs and

WANs

Network

speed

Connectivity

Wired vs

wireless

Network

topologies

Knowledge: LAN and WAN. Define the meanings of the
terms ‘bandwidth’ and ‘latency’. Differentiate between
wired and wireless connectivity. Define the term ‘topology’.
Understanding: Give reasons why computers are
connected on a network. Differentiate between a LAN
and a WAN. Explain the benefits to organisations of a
WAN. Explain why protocols are needed on a network
Describe the purpose of an IP address. Explain how
bandwidth and latency affect the performance of a
network. Use bits per second (bps) to describe network
speed. Explain how data are transmitted along copper
and fibre-optic cables. Compare the performance of
copper and fibre-optic cables and give examples of their
use. Describe how high-speed broadband is delivered
Describe how devices are connected on a wireless
network. Describe the characteristics of bus, star and
mesh network topologies. Skills: Categorise tasks
according to the type of network used to carry them out.
Construct expressions involving file size, transmission
rate and time. Compare the performance of wired and
wireless LANs and give examples of situations where
one is preferable to the other. Summarise the

Give three reasons
for connecting
devices in a network
. Explain how a LAN
differs from a WAN.
Define the term
‘internet backbone’.
Describe the
function of a router.
Explain how data
are transmitted on a
fibre-optic cable.
State two
advantages and two
disadvantages of
using wireless to
connect devices on
a LAN rather than
cable.
Construct an
expression to
calculate the time

8.2 Binary Bits

and Bobs

Unit CT1-6

Unit CT7-12

Unit CT13-18

Unit CT19-24

Unit CT25-30

Seneca. BBC Bitesize.
cs4fn, Queen Mary, University of London
(www.cs4fn.org).
Computer Science Unplugged

(http://csunplugged.org/

BCS Glossary of Computing and ICT, 13th

edition (ISBN 9781780171500)

A range of articles on teaching coding:

www.edsurge.com/guide/teaching-kids-to-code

Python resources

Official Python documentation (also available

through help in IDLE): www.docs.python.org/3/

Python summer school from Anglia Ruskin

University is an excellent resource with videos

and programming challenges:

http://www.pythonschool.net/

Python code for kids is a clearly written

summary of the Python language written in

accessible language:

www.pythondictionary.code-it.co.uk/

http://www.korokithakis.net/tutorials/python/
http://www.korokithakis.net/tutorials/python/
http://www.youtube.com/watch?v=Pim4aYfiZiY
http://www.cs4fn.org/
http://csunplugged.org/
https://www.edsurge.com/guide/teaching-kids-to-code
http://docs.python.org/3/
http://www.pythonschool.net/
http://www.pythonschool.net/
http://pythondictionary.code-it.co.uk/
http://pythondictionary.code-it.co.uk/

characteristic of Wi-Fi, Bluetooth, RFiD, Zigbee and
NFC and give examples of their use
Draw and label a diagram of each topology
Match descriptions to network topologies. Match
descriptions of what they do to internet components
(backbone, POP, NAP, router).

needed to transmit a
file over a network.
Explain why
protocols are
needed on a
network.

‘Python in 10 minutes’ is a quick run through of

the basic concepts:

www.korokithakis.net/tutorials/python/

‘Quintin Cutts – Too much doing, not enough

understanding’ is a 20-minute video containing

useful ideas and concepts on how to teach

programming:

www.youtube.com/watch?v=Pim4aYfiZiY

http://www.korokithakis.net/tutorials/python/
http://www.korokithakis.net/tutorials/python/
http://www.youtube.com/watch?v=Pim4aYfiZiY

